Kinetics of naphthalene adsorption on an activated carbon: comparison between aqueous and organic media.
نویسندگان
چکیده
The purpose of this work was to explore the kinetics of naphthalene adsorption on an activated carbon from aqueous and organic solutions. Kinetic curves were fitted to different theoretical models, and the results have been discussed in terms of the nature and properties of the solvents, the affinity of naphthalene to the solutions, and the accessibility to the porosity of the activated carbon. Data was fitted to the pseudo-second order kinetic model with good correlation coefficients for all the solution media. The faster adsorption rate was obtained for the most hydrophobic solvent (heptane). The overall adsorption rate of naphthalene seems to be controlled simultaneously by external (boundary layer) followed by intraparticle diffusion in the porosity of the activated carbon when water, ethanol and cyclohexane are used as solvents. In the case of heptane, only two stages were observed (pore diffusion and equilibrium) suggesting that the limiting stage is the intraparticle diffusion. The low value of the boundary thickness supports this observation.
منابع مشابه
مقایسه فرآیند ایزوترم جذبی و سینتیک نفتالن و فنانترن بر روی بستر کربن فعال در حلال آلی ان - هگزان
Introduction: Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant current environmental issues. Phenanthrene and naphthalene adsorption at activated carbon beds prevent the release of these compounds into the environment. The objective of this research was to compare the amounts of phenanthrene and naphthalene adsorption at activated carbon beds in the n-hexane solution. . ...
متن کاملInvestigation the Efficiency of Activated Carbon Coated with ZnO Nanoparticles Prepared by Green Synthesis Method in Removing Humic Acid from Aqueous Solutions: Kinetics and Isotherm Study
Background & objective: The presence of natural organic matter in water sources creates various problems, especially in common water treatment process. These compounds cause unfavorable taste and odor in water and are among the most important precursors of water disinfection by-products. This study was carried out to evaluate the efficiency of activated carbon (AC) and activated carbon modified...
متن کاملAdsorption of diazinon from aqueous solutions onto an activated carbon sample produced in Iran
Background: Considering the severe health and environmental hazards caused by the entry of diazinon toxin into water resources, its removal is very important. Given the high costs of imported adsorbents, this research attempted to evaluate, for the first time, the efficiency of Iranian activated carbon in removing diazinon from aqueous solutions. Methods: In this batch experimental study, the ...
متن کاملKinetic and thermodynamic studies of the removal of murexide from aqueous solutions on to activated carbon
The objective of this study was to assess the adsorption potential of activated carbon (AC) asan adsorbent for the removal of Murexide (Mu) from aqueous solutions. The influence of variablesparameters including pH, amount of adsorbent, sieve size of adsorbent, temperature and contact timeon Mu removal was studied. Following optimization of variables, the relation between concentrations ofdye re...
متن کاملInvestigation of effective parameters on adsorption of amoxicillin from aqueous medium onto activated carbon
In this study, the adsorption of amoxicillin onto activated carbon was investigated. The effect of particle size and the effluent flow rate was discussed as well as the kinetics and isotherm of adsorption equilibrium. The isotherm equilibrium studies showed that the Langmuir model was appropriate for describing the adsorption equilibrium of amoxicillin onto the activated carbon. Furthermore, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 76 4 شماره
صفحات -
تاریخ انتشار 2009